

UNIVERSITÀ DI BOLOGNA

Highlights from IMS 20th Meeting 2023

CAR-T anti-BCMA dopo almeno 1-4 precedenti terapie

Michele Cavo

Istituto di Ematologia Seràgnoli Alma Mater Studiorum – Università degli studi di Bologna

BOLOGNA, 30-31 gennaio 2024 Royal Hotel Carlton

Disclosures: Michele Cavo

Company name	Research support	Employee	Consultant	Stockhold er	Speakers bureau	Advisory board	Other
GlaxoSmithKline			×			×	Honoraria
Janssen			×		×	×	Honoraria
Sanofi			×		×	×	Honoraria
Roche			×			×	Honoraria
Amgen			×			×	Honoraria
Takeda			×			×	Honoraria
AbbVie			×			×	Honoraria
Bristol Myers Squibb			×		×	×	Honoraria
Celgene			×		×	×	Honoraria

KarMMa-3: design, baseline characteristics and PFS

• Epd: 59

Decrease No change

51

No. of cycles, median:

15

• Other: 25

Characteristic	lde-cel (n = 254)	Standard regimens (n = 132)
Median (range) age, years	63 (30–81)	63 (42–83)
Sex, male, n (%)	156 (61)	79 (60)
Median (range) time from diagnosis to screening,	4 1 (0 2 21 8)	40(07,177)
years	4.1 (0.2–21.8)	4.0 (0.7-17.7)
High tumor burden, n (%) ^a	71 (28)	34 (26)
Extramedullary disease, n (%) ^b	61 (24)	32 (24)
Treatment	lde-cel (n = 254)	Standard regimens (n = 132)
Median (range) number of prior regimens	3 (2–4)	3 (2–4)
Median (range) time to progression on last prior	7 1 (0 7 67 7)	6 9 (0 4–66 0)
antimyeloma therapy, months	7.1 (0.7-07.7)	0.9 (0.4–00.0)
Refractory status, n (%)		
IMiD agent refractory	224 (88)	124 (94)
PI refractory	189 (74)	95 (72)
Daratumumab ^a	242 (95)	123 (93)
Double-class refractory ^b	169 (67)	91 (69)
Triple-class refractory	4.6.4 (6.5)	00 (07)

ORR and mPFS were numerically higher in patients with decrease versus increase or no change, with deeper, more durable responses

Rodriguez-Otero P. et al, N Engl J Med 2023; 388:1002-1014; Einsele H, et al. IMS 2023 encore Poster P008.

PFS: subgroup analysis (ITT population)

	lde-cel (n = 254)	Standard regimens (n = 132)	HR	HR (95% CI)		lde-cel (n = 254)	Standard regimens (n = 132)	HR	HR (95% CI)
All	149	93	0.51	←	High-risk cytogenetic abnormalities ^b		(11 102)			
Sex					Yes	65/107	42/61	0.61	—	
Male	92/156	55/79	0.53		No	84/147	51/71	0.44		
Female	57/98	38/53	0.47		Extramedullary plasmacytoma				1	
Age group					Yes	48/61	28/32	0.40	—	
< 65	93/150	51/78	0.57		No	100/192	65/100	0.51		
65-74	49/92	36/45	0.42		Daratumumab refractory					
75-84	7/12	6/9	0.59		Yes	143/242	88/123	0.51	—	
Race					No	6/12	5/9	0.40		_
White	101/172	54/78	0.52		Double-class refractory					
Asian	4/7	1/5	NC		Yes	106/169	72/91	0.47		
Black or African American	8/18	13/18	0.50		No	43/85	21/41	0.65		
Other	2/3	4/4	NC		Triple-class refractory ^c					
Region					Yes	103/164	70/89	0.46	-	
North America	84/144	60/82	0.50		No	46/90	23/43	0.65		
Europe	63/106	32/45	0.44		Penta-drug refractory ^a		207.10	0.00		
Japan	2/4	1/5	NC		Yes	12/15	3/5	0.63		
R-ISS stage at baseline			a (a		No	137/239	90/127	0.49	-	
l or ll	113/200	/8/108	0.48	-	No. of prior antimveloma regimens					
	27731	8/14	0.86		2	41/78	26/39	0 51		
	00/472	(0)00	0.47		3	57/95	37/49	0 44		
	99/1/2	60/90	0.4/		4	51/81	30/44	0.58		
≥ 3U %	44//1	28/34	0.60			51701	30/ 11	0.30		
				0.0 1.0	3.0				0.0 1.0	
			Fa	vors Ide-cel Favors reg	standard imens			Fav	ors Ide-cel	Favors star regimer

The PFS benefit of ide-cel was consistently observed across multiple patient subgroups

Adapted from Rodríguez-Otero P, et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N Engl J Med 2023;388:1002-14.

Per IRC based on IMWG criteria. Assumption of proportional hazards was assessed using a treatment*log(time) interaction term in each model. ^aDetermined by the higher value between bone marrow aspirate and bone marrow biopsy CD138+ plasma cell. Low: < 50%, High: \geq 50%; ^bDefined as t(4;14), t(14;16), or del(17p); ^cRefractory to \geq 1 each of an IMiD, a PI, and an anti-CD38 antibody; ^dRefractory to lenalidomide, pomalidomide, bortezomib, carfilzomib, and daratumumab. NC, not computed.

4

Final PFS analysis at 30.9 months median follow-up

PFS was analyzed in the ITT population of all randomized patients in both arms and included early PFS events occurring between randomization and ide-cel infusion. PFS based on IMWG criteria per IRC. ^aBased on Kaplan-Meier approach; ^bStratified HR based on univariate Cox proportional hazard model. CI is 2-sided.

HR, hazard ratio; ide-cel, idecabtagene vicleucel; IMWG, International Myeloma Working Group; ITT, intent-to-treat; PFS, progression-free survival.

Provided by BMS in response to unsolicited requests only.

Deep and durable responses with ide-cel

Secondary endpoint	lde-cel (n = 254)	Standard regimens (n = 132)
CR rate (95 % CI), % ^d	44 (38-50)	5 (2-9)
MRD-negative CR rate, n/N (%) (95% CI) ^e	57/163 (35) (28-42)	1/54 (2) (0-5)
Median (95% CI) DOR, months	16.6 (12.1-19.6)	9.7 (5.5-16.1)
Median PFS2, months	23.5	16.7
HR (95% CI)	0.79 (0.	60-1.04)

Patient disposition

Patients, n (%)	lde-cel (n = 254)	Standard regimens (n = 132)	Crossover from standard regimens to ide-celª (n = 82)
ITT population ^b	254 (100)	132 (100)	-
Underwent leukapheresis	249 (98)	-	82 (62)
Received bridging therapy	212 (83)	-	68 (52)
Did not receive allocated study treatment	29 (11)	6 (5)	8 (6)
Treated population ^c	225 (89)	126 (95)	74 (56)
Ongoing in study	136 ^d (54)	10 (8)	52 ^e (39)
Ongoing for PFS	53 (21)	7 (5)	NA
Survival follow-up	83 (33)	3 (2)	50 ^f (38)

^aFollowing IRC-confirmed PD. Percentages used the standard regimens ITT population (n = 132) as the denominator; ^bAll randomized patients; ^cPatients who received the study treatment to which they were randomly assigned (identical to the previously reported safety population), percentage calculated based on ITT population; ^dIncluded 3 patients ongoing in survival follow-up who received leukapheresis but did not receive ide-cel infusion; ^eIncluded 2 patients who received leukapheresis but not ide-cel infusion; ^f2 patients are also ongoing in the pretreatment period. ITT, intent-to-treat; NA, not applicable.

OS analysis confounded by substantial crossover

More than half of patients in standard regimens arm received ide-cel as subsequent therapy upon confirmed PD and the majority received ide-cel within 3-16 months of randomization

Prespecified crossover-adjusted analysis shows OS benefit of ide-cel

Trend of OS benefit with ide-cel among treated patients

• This is an exploratory analysis of the treated population without adjusting for crossover

Safety profile of ide-cel remained consistent

Treated population, n (%)	lde-cel (n = 225)	Standard regimens (n = 126)
Any-grade AE	225 (100)	124 (98)
Serious AE	105 (47)	52 (41)
ITT population, n (%)	lde-cel (n = 254)	Standard regimens (n = 132)
Overall deaths	106 (42)	58 (44)
Cause of death		
Disease progression	64 (25)	37 (28)
AEs	17 (7)	8 (6)
Other causes	23 (9)	12 (9)
SPMs ^a	2 (1)	1 (1)

Treated population, n (%)	lde-cel (n = 225)
CRS ^b	
Any grade	197 (88)
Grade 3/4	9 (4)
iiNT ^c	
Any grade	34 (15)
Grade 3/4	7 (3)
Infections	
Any grade	125 (56)
Grade 3/4	50 (22)

- There were no new CRS or iiNT events with ide-cel since the interim analysis¹ and no parkinsonism or Guillain-Barré syndrome were reported
- No SPMs of T-cell origin were reported in the ide-cel arm
- No new safety signals

^aDeaths due to SPMs in the ide-cel arm were leukemia (n = 1) and pancreatic adenocarcinoma (n = 1); death due to SPMs in the standard regimens arm was malignant neoplasm of unknown primary site (n = 1); ^bCRS was graded according to modified Lee's criteria;² maximum-grade events are reported, patients could have >1 event; ^cIncludes immune effector cell-associated neurotoxicity syndrome reported by investigator as a neurologic toxicity.

AE, adverse event; CRS, cytokine release syndrome; ide-cel, idecabtagene vicleucel; iiNT, investigator-identified neurotoxicity; ITT, intent-to-treat; SPM, second primary malignancy.

1. Rodríguez-Otero P, et al. N Engl J Med 2023;388:1002-1014; 2. Lee DW, et al. Blood. 2014;124:188-195.

Provided by BMS in response to unsolicited requests only.

PERSPECTIVE

The NEW ENGLAND JOURNAL of MEDICINE

NEJM, January 24, 2024

Perspective

Secondary Cancers after Chimeric Antigen Receptor T-Cell Therapy

Nicole Verdun, M.D., and Peter Marks, M.D., Ph.D.

Since the first such product was approved in 2017, chimeric antigen receptor (CAR) T-cell therapies have become important treatments for relapsed or refractory hematologic cancers, and

the six products involving autologous CAR T cells that have been approved in the United States now cover a range of indications spanning relapsed or refractory B-cell acute lymphoblastic leukemia, B-cell non-Hodgkin's lymphomas, and multiple myeloma (see table). In addition, numerous autologous and allogeneic CAR-T products are in development. Manufacturers of these next-generation products are seeking to improve on the efficacy and safety profile of existing therapies for hematologic cancers and to target solid tumors. CAR T cells are also under investigation for the treatment of nonmalignant conditions, such as autoimmune diseases.1

the current generation of approved CAR-T products comes along with several well-described safety concerns that are noted in the products' labeling, including risks of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, various forms of cytopenia, and hypogammaglobulinemia. Better understanding of some of these risks has led to improved outcomes, such as for patients who develop cytokine release syndrome.²

erapies for hematologic cancers d to target solid tumors. CAR T lls are also under investigation the treatment of nonmalignant nditions, such as autoimmune seases.¹ All currently approved CAR-T products employ T cells that are produced by using viral transduction to transfer the genetic construct. Given the relatively recent deployment of these therapies, the Food and Drug Administration

(FDA) has issued draft guidance recommending that people who receive CAR T cells engineered with integrating vectors be monitored for extended periods for adverse events, including cancers.3 Although CAR-T products have to date been associated with fewer cancers than products made with the previous generation of viruses used for gene therapy transduction, the potential for oncogenesis caused by genomic integration or other mechanisms still exists with the current generation of retroviral vectors. For instance, the lentiviral vector constructs, despite integrating in a semirandom fashion into the genome, have affinity for areas of the genome in which active gene expression is taking place, which may pose a risk for insertional oncogenesis.4

As of December 31, 2023, the FDA had become aware of 22 cases of T-cell cancers that occurred after treatment with CAR-T prod-

Brand Name	Generic Name	Manufacturer	Year Initially Approved	Indications (Relapsed or Refractory Disease)
Kymriah	Tisagenlecleucel	Novartis Pharmaceuticals	2017	Pediatric or young-adult B-cell ALL, large B-cell lymphoma, fo licular lymphoma
Yescarta	Axicabtagene ciloleucel	Kite Pharma	2017	Large B-cell lymphoma
Tecartus	Brexucabtagene autoleucel	Kite Pharma	2020	B-cell ALL, mantle-cell lymphor
Breyanzi	Lisocabtagene maraleucel	Juno Therapeutics/Bristol Myers Squibb	2021	Large B-cell lymphoma, primar mediastinal large B-cell lym- phoma, follicular lymphoma
Abecma	Idecabtagene vicleucel	Celgene/Bristol Myers Squibb	2021	Multiple myeloma
Carvykti	Ciltacabtagene autoleucel	Janssen Biotech	2022	Multiple myeloma

ucts. Such cancers have included T-cell lymphoma, T-cell large granular lymphocytosis, peripheral T-cell lymphoma, and cutaneous T-cell lymphoma. Among the 14 cases for which adequate data are currently available, the cancers have manifested within 2 years after administration of CAR T cells (range, 1 to 19 months), with roughly half occurring within the first year after administration. Cases have been reported in conjunction with five of the six available CAR-T products, but the small number of cases and variation in product use preclude conclusions about the strength of an association with any specific product. Some of these cases are still under investigation.

In three cases for which genetic sequencing has been performed to date, the CAR transgene has been detected in the malignant clone, which indicates that the CAR-T product was most likely involved in the development of the T-cell cancer. With more than 27,000 doses of the six approved products having been administered in the United States, the overall rate of T-cell cancers among people

receiving CAR-T therapies appears to be quite low, even if all reported cases are assumed to be related to treatment. But relying on postmarketing reporting may lead to underestimates of such cases.

The FDA is attempting to gather as much information as possible on each of the reported cases, but in many instances, adequate samples of the lymphomas have not been retained for testing by means of polymerase chain reaction or genome sequencing. Determination of whether the T-cell cancer is associated with the CAR construct therefore most likely won't be possible for every case reported to date. The FDA plans to provide updates as substantive new information becomes

available.

It is important for clinicians caring for people who have received CAR T cells to report the occurrence of any new cancer. At this time, we recommend that patients and clinical trial participants who receive treatment with these products be monitored for new cancers throughout their lives, since — owing to the relatively recent widespread introduc-

tion of CAR-T products into clinical care - we don't yet know how long after treatment people remain at risk for these adverse events. If a new cancer occurs after treatment with one of these products. clinicians should contact the manufacturer to report the event and obtain instructions on the collection of patient samples for testing for the presence of the CAR transgene. Clinicians are also encouraged to report such T-cell cancers to the FDA by contacting us at 1-800-FDA-1088 or visiting the website for our medical product safety reporting program (http:// www.fda.gov/medwatch).

Moving forward, particularly as the use of CAR T cells for indications outside hematology and oncology is considered, new strategies involving targeting insertion of the CAR construct to specific loci might help reduce the risk of cancers due to integration of the CAR construct at oncogenic loci within the genome.⁵ Comprehensive tumor-testing strategies might also generate information on the risk for and nature of these cancers and provide additional mechanistic insights. For now, second-

CARTITUDE-4: study design and baseline characteristics

Screening Key inclusion criteria: • Age ≥18 years	Randomization			SOC arm PVd or DPdab		
 with MM 1-3 prior LOT (including PI + IMiD) Len refractory ECOG PS ≤1 	stratified by: Choice of PVd/DPd	Bridging PVd or DPdª ≥1 cycle	Day 1: Cilta-cel infusion (Target: 0.75×10 ⁶ CAR+ T cells/kg)		Day 1–112: Collect safety, efficacy, PK/PD data every 28 days	Follow-up
 Prior CAR-T or BCMA-targeting therapy 	 ISS stage Number of prior LOT 	Apheresis (start of stud	Lymphodepletion	Cilta-cel arm		

	ІТТ рор	ulation
Baseline characteristic	Cilta-cel (n=208)	SOC (n=211)
Age, median (range), years	61.5 (27-78)	61.0 (35-80)
Male, n (%)	116 (55.8)	124 (58.8)
White, n (%)	157 (75.5)	157 (74.4)
ECOG PS ≤1, n (%) ^{a,b}	207 (99.5)	210 (99.5)
ISS stage, n (%)		
1	136 (65.4)	132 (62.6)
II	60 (28.8)	65 (30.8)
III	12 (5.8)	14 (6.6)
Bone marrow plasma cells ≥60%,° n (%)	42 (20.4)	43 (20.7)
Presence of soft tissue plasmacytomas, ^d n (%)	44 (21.2)	35 (16.6)
Years since diagnosis, median (range)	3 (0.3-18.1)	3.4 (0.4-22.1)
Prior LOT, median (range)	2 (1-3)	2 (1-3)
1 prior LOT, n (%)	68 (32.7)	68 (32.2)
2 or 3 prior LOT, n (%)	140 (67.3)	143 (67.8)

	ITT population			
Baseline characteristic	Cilta-cel (n=208)	SOC (n=211)		
Cytogenetic high risk, n (%) ^e	123 (59.4)	132 (62.9)		
del(17p)	49 (23.7)	43 (20.5)		
t(14;16)	3 (1.4)	7 (3.3)		
t(4;14)	30 (14.5)	30 (14.3)		
gain/amp(1q)	89 (43.0)	107 (51.0)		
2 or more high-risk cytogenetic features	43 (20.8)	49 (23.3)		
del(17p), t(14;16), or t(4;14)	73 (35.3)	69 (32.9)		
Triple-class ^f exposed, n (%)	53 (25.5)	55 (26.1)		
Penta-drug ^g exposed, n (%)	14 (6.7)	10 (4.7)		
Refractory status, n (%)				
Triple-class refractory ^{f,h}	30 (14.4)	33 (15.6)		
Bortezomib	55 (26.4)	48 (22.7)		
Pomalidomide	8 (3.8)	9 (4.3)		
Daratumumab	48 (23.1)	45 (21.3)		
Any Pl	103 (49.5)	96 (45.5)		

CARTITUDE-4: Patient Population and Follow-Up

- At November 1, 2022, data cut-off, median follow-up was 15.9 months (range, 0.1-27)
- First patient randomized on July 10, 2020, and last patient randomized on November 17, 2021
- Median time from first apheresis to cilta-cel infusion was 79 days

^aDue to disease progression (n=30) or death (n=2) during bridging therapy/lymphodepletion. ^bHave not progressed. cilta-cel, ciltacabtagene autoleucel; ITT, intent-to-treat; LOT, line of therapy; SOC, standard of care; tx, treatment.

CARTITUDE-4: PFS (ITT Population)

PFS: Key Subgroup Analysis (ITT)

	HR and	I 95% Cl	HRª (95% CI)		HR and	95% Cl	HRª (95% CI)
	←Favor cilta-cel arm	Favor SOC arm	\rightarrow	←	Favor cilta-cel arm	Favor SOC arm	\rightarrow
Number of lines of prior 1 2 or 3 ISS staging ^b I II III Presence of soft tissue	therapy		0.35 (0.19-0.66) 0.24 (0.16-0.37) 0.30 (0.19-0.48) 0.21 (0.11-0.42) 0.33 (0.11-0.95)	Cytogenetic risk at study entry High risk ^c Any of 4 markers abnormal At least 2 of 4 markers abnormal Excluding gain/amp(1q) Standard risk Refractory to	⊕_ -⊕ -⊕		0.25 (0.16-0.38) 0.33 (0.17-0.64) 0.26 (0.15-0.45) 0.40 (0.21-0.77)
plasmacytomas Yes No Tumor burden Low Intermediate High			0.39 (0.21-0.75) 0.22 (0.14-0.34) 0.27 (0.17-0.44) 0.26 (0.12-0.56) 0.27 (0.13-0.56)	PI + IMiD Anti-CD38 + IMiD PI + anti-CD38 + IMiD Last line of prior therapy Prior exposure to Daratumumab Bortezomib Bortezomib and daratumumab			0.24 (0.14-0.38) 0.26 (0.14-0.50) 0.15 (0.05-0.39) 0.27 (0.19-0.39) 0.23 (0.12-0.44) 0.27 (0.19-0.39) 0.24 (0.12-0.46)
	0 0.5	1 2			0 0.5	1 2	

CARTITUDE-4: PFS by prior LoT

ORR and MRD negativity rates

TEAEs, CRS and CAR-T-Related Neurotoxicity

	Safety population					
Select TEAE ≥15%, n (%)	Cilta-cel	(n=208)	SOC (n=208)			
	Any grade	Grade 3/4	Any grade	Grade 3/4		
Any AE	208 (100)	201 (96.6)	208 (100)	196 (94.2)		
Serious AE	92 (44.2)	67 (32.2)	81 (38.9)	70 (33.7)		
Hematologic	197 (94.7)	196 (94.2)	185 (88.9)	179 (86.1)		
Neutropenia	187 (89.9)	187 (89.9)	177 (85.1)	171 (82.2)		
Anemia	113 (54.3)	74 (35.6)	54 (26.0)	30 (14.4)		
Thrombocytopenia	113 (54.3)	86 (41.3)	65 (31.3)	39 (18.8)		
Lymphopenia	46 (22.1)	43 (20.7)	29 (13.9)	25 (12.0)		
Infections	129 (62.0)	56 (26.9)	148 (71.2)	51 (24.5)		
Upper respiratory tract ^a	39 (18.8)	4 (1.9)	54 (26.0)	4 (1.9)		
Lower respiratory tract ^b	19 (9.1)	9 (4.3)	36 (17.3)	8 (3.8)		
COVID-19°	29 (13.9)	6 (2.9)	55 (26.4)	12 (5.8)		

	As-treated patients (n=176)						
AEs, n (%)	Any grade	Grade 3/4	Median time to onset, days	Median duration, days	Resolved, n		
CRS	134 (76.1)	2 (1.1)	8	3	134		
Neurotoxicity ^a	36 (20.5)	5 (2.8)					
ICANS	8 (4.5)	0 ^b	10	2	8		
Other ^c	30 (17.0)	4 (2.3)					
Cranial nerve palsy ^d	16 (9.1)	2 (1.1)	21	77	14		
Peripheral neuropathy	5 (2.8)	1 (0.6)	63	201	3		
MNT	1 (0.6)	0	85	-	0		

In the cilta-cel as-treated population:

- 30 patients had non-ICANS neurotoxicities^c
 - 16 cranial nerve palsies (14 recovered)
 - 5 peripheral neuropathies
 - 1 MNT (grade 1)
- Lower incidence and severity of CRS, ICANS, MNTs, and some cytopenias^e observed with CARTITUDE-4 vs CARTITUDE-1
 - Cilta-cel may be better tolerated when used earlier in treatment
 - Effective bridging therapy enables better control of tumor burden prior to CAR-T infusion
 - MNTs were lower likely related to patient management strategies implemented to mitigate this risk

KarMMa-2 cohort 2: ide-cel for "functional" HR MM

^aAfter lymphodepletion (cyclophosphamide 300 mg/m² + fludarabine 30 mg/m² × 3), patients received a single infusion of ide-cel at a range of 150-450 × 10⁶ CAR+ T cells (up to an additional 20%; 20% over the protocol-specified dose constituted overdose); ^bAt investigator discretion, patients could receive maintenance treatment post-infusion; ^cMeasurable disease determined by M protein (serum protein electrophoresis \geq 0.5 g/dL or urine protein electrophoresis \geq 200 mg/24 hours) and/or light chain MM without measurable disease in serum or urine (serum immunoglobulin free light chain \geq 10 mg/dL and abnormal serum immunoglobulin κ : λ free light chain ratio); ^dMust contain a PI, an IMiD[®] agent, and dexamethasone.

ASCT, autologous stem cell transplantation; CAR, chimeric antigen receptor; CR, complete response; CRR, complete response rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; HRQoL, health-related quality of life; ide-cel, idecabtagene vicleucel; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; MM, multiple myeloma; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PI, proteasome inhibitor; PK, pharmacokinetics; sCR, stringent complete response; TTP, time to progression; TTR, time to response; VGPR, very good partial response.

Dhodapkar M et al, ASH 2023

Provided by BMS in response to unsolicited requests only.

KarMMa-2

KarMMa-2 cohort 2c: clinical outcomes

KarMMa-2

Summary

• Ide-cel and cilta-cel significantly improved PFS vs SOC in patients with early lines of RRMM

✓ PFS benefit across many prespecified subgroups

• Both ide-cel and cilta-cel significantly increased the ORR and depth of response vs SOC

Relevance of the most effective bridging therapy

• The safety profile of ide-cel and cilta-cel was manageable and consistent with prior studies in later LoT